Firm Real-Time Processing in an Integrated Real-Time System

Tim Kaldewey Caixue Lin Scott Brandt
Computer Science Department
Univ. of California, Santa Cruz
{kalt, lcx, sbrandt} @cs.ucsc.edu

Abstract

We explore the integration of firm real-time processing—
where processing completed after its deadline has no value
but some jobs may be terminated or skipped—into an inte-
grated real-time system managing hard, soft, and non-real-
time processes. We show that it is feasible to add firm real-
time processing to an integrated environment and that con-
currently executing soft real-time processes can benefit from
the slack made available from dropped firm real-time jobs.
We examine how dropping jobs of firm real-time tasks using
different static and dynamic drop patterns reduces deadline
misses of soft real-time tasks. Our results show that even
a simple static drop pattern results in noticeable perfor-
mance gain for other soft real-time processes and we argue
that our dynamic approach, once implemented, will produce
even better results.

1 Introduction

The boundaries between real-time and best effort com-
puting are becoming increasingly blurred. In the beginning
real-time was understood as what refers now to hard real-
time—processes whose tasks are not allowed to miss any
deadline. Particularly in the multimedia domain, many ap-
plications exist which are not necessarily required to meet
all of their deadlines. These soft real-time processes vary
broadly in their requirements and many subclasses have
been identified [3]. In order to achieve better CPU utiliza-
tion, schedulers supporting soft real-time processing can let
such processes enter the system even though their deadlines
cannot always be guaranteed. At the same time they need to
ensure that in case of high system load hard real-time dead-
lines are still met and best-effort processes are not starved.

Lin and Brandt showed that in an integrated environment
supporting hard, soft, and non-real-time processes, soft
real-time processes can benefit greatly from dynamic slack
generated by both hard and soft real-time processes [7].
Firm real-time [14], or weakly hard real-time [1] tasks, only

need to meet a certain number of deadlines, allowing a cer-
tain number of jobs to be skipped. Our goal is to extend
our integrated real-time system [3] to natively support firm
real-time processing, and to exploit the firm real-time prop-
erty to increase the amount of available slack—at exactly
the right time—to further improve the performance of soft
real-time and best-effort processes.

2 Related Work

In the literature firm real-time is viewed as a hybrid cat-
egory between hard and soft real-time. Firm real-time pro-
cesses are always required to meet a certain amount of dead-
lines in a given time window, described by a certain number
of consecutive invocations. Different opinions exist about
the value and handling of tasks missing deadlines. The ap-
proaches range from letting late tasks finish at low priority
or aborting their execution, without providing any results to
the application.

Traditionally deadline misses for RT processes have
been expressed as a maximum allowable loss percentage,
also referred to as Skip-Over Model [8]. This description
is insufficient for firm real-time applications because it as-
sumes that deadline misses are adequately spaced. The ap-
proach taken by Hamadaoui and Ramanathan characterizes
firm real-time processes by using (m, k)-firm deadlines, de-
fined as meeting m deadlines out of k£ consecutive task invo-
cations of a process [9]. While this approach was targeting
multimedia streams in a Network, Quan and Hu [12] ex-
plicitly tackle CPU scheduling as an application domain for
(m, k)-firm constraints. A similar approach was taken in a
series of three papers by Burns and various colleagues from
the University of York [1, 5, 2] ' These approaches continue
processing of late results at low rates, while others assume
that late results have no value.

Marchand and Silly-Chetto describe a dynamic slack
stealing algorithm based on an Earliest Deadline Latest
scheduler [10]. It discards selected task instances without

I They prefer the term Weakly Hard Real-Time

violating firm real-time constraints set by the application.
The focus is on optimizing the response time of aperiodic
tasks in the presence of firm real-time workloads. An ap-
proach with the same intent has been undertaken by Thomas
et al. [13] pointing out that in general the major part of avail-
able slack is non-uniformly distributed. Niu and Quan [11]
provide a proof that in static drop patterns uniformly dis-
tributed slack (created by dropped firm real-time tasks) pro-
vides optimal performance for DVS systems. Xiu et al. [14]
use Markov Chains to characterize the behavior of firm real-
time processes which allows task models different from the
previously used periodic/aperiodic ones. Their approach
is intended for use in networked feedback control systems
where the result of one task execution influences the next.
Here also tasks are dropped rather than results delivered
late.

3 Integrating firm real-time into an inte-
grated environment

We follow the newer approaches [10, 14, 11, 13], that
late results do not have any value for a firm real-time appli-
cation. This implies that firm real-time tasks are not sched-
uled if they cannot meet their deadlines and terminated at
their deadline if they have not finished by then. Such a be-
havior can be illustrated using a process decoding a video
stream in a fully loaded system. When video frames are
delivered late the playback is perceived as choppy. Skip-
ping frames and ensuring the next frames are delivered on
time may be less disturbing and might not be noticeable
for the spectator, depending on the content of the skipped
scene. One might argue that contemporary personal com-
puters need only a fraction of their CPU time for decoding
a video, but in case of interrupts caused by mixed work-
loads continuous playback might not be feasible. Consider-
ing small mobile devices with a fraction of the processing
power of a PC this approach becomes more sensible; video
on mobile phones is becoming very popular in Europe. Giv-
ing the resources to a video process as if it were a hard real-
time task might not leave resources for other functionalities
or might not be possible at all because of resource limita-
tions.

The RAD model [3] characterizes real-time processes by
their resource needs (how much?) in relation to their dis-
patching requirements (when?). It distinguishes hard real-
time, best-effort and soft real-time processes, the latter sub-
divided into missed-deadline, resource-adaptive, and rate-
based soft real-time. In this model, firm real-time is a hy-
brid category between hard real-time and resource-adaptive
soft real-time (Figure 3). A firm real-time process can lower
its resource consumption by dropping jobs, but the mini-
mum service has to be guaranteed. Therefore firm real-time
workloads can be describes as consisting of two parts: a

Missed
Deadline

constrained

Resource
Allocation
SRT

Resource Allocation

unconstrained

unconstrained constrained

Dispatching

Figure 1. The RAD model extended with a
process class for firm real-time

hard real-time part representing the process minimum re-
quirements and a resource-adaptive part. How to support
these tasks and optimally exploit the resource adaptive part
for performance improvements of other tasks is the subject
of our current research.

After choosing to skip permissible jobs of firm real-time
tasks in favor of soft real-time tasks in cases of high system
load, the question is which ones to skip. We evaluate the
gain of compromising firm real-time tasks for soft real-time
performance in a dynamic integrated system. We use the
(m, k) model to discuss static and dynamic approaches for
dropping firm real-time jobs searching for an optimal ap-
proach. Preliminary results confirm that static patterns work
well. We are investigating dynamic dropping strategies and
expect them to deliver superior results.

3.1 Exploiting the characteristics of firm
real-time

After deciding to drop jobs of firm real-time tasks the
difficulty is to do it in way that a) the minimum require-
ments are still met and b) other processes can make optimal
use of the generated slack. Different static approaches (drop
patterns) were examined by Koren and Shasha [8] and Niu
and Quan [11]. In the former %k consecutive executions form
a static window during which the same m tasks are always
executed, in the deeply red pattern that are always the first
ones. It is obvious that the drop pattern can be chosen ar-
bitrarily, since the pattern is chosen once for all windows
(Figure 2(a)).

Niu and Quan [11] prove that among the static patterns
a uniform distribution for dropped tasks provides optimal
performance. As shown in Figure 2(b) an (m, k)-firm con-
straint with & — m > 2 can be satisfied by dropping a sin-

Execution Time

DXL [XL XX

(a) a static drop pattern (deeply red)

[T TR TR

(b) arbitrary drop-1 pattern

ecution Tin

XX XXX

(c) dynamic drop pattern

Execution Time

Figure 2. Firm real-time process with (3,5)
constraints using different drop patterns

Execution Time

\
Jobs S

Figure 3. Firm real-time process violating its
(3,5) constraints

gle, arbitrary job in consecutive windows of size j. While
choosing 7 equal to m + 1 is always feasible, better choices
for j may exist. We are looking for a formal approach to
find the optimal value for j.

Since static drop patterns provide no flexibility regard-
ing when and if to drop jobs, we expect better results from
a dynamic approach which drops jobs on demand. In or-
der to be able to drop firm real-time jobs dynamically with-
out violating the tasks’ constraints a sliding window mech-
anism needs to be applied. The window cannot be kept
static if dropped tasks are chosen dynamically, otherwise
the constraints described by (m, k) could be violated (Fig-
ure 3). A sliding window mechanism keeping track of the
last k—1 executions allows the system to determine whether
the current task can be dropped without violating the given
constraints (Figure 2(c)). Considering dropping tasks only
when needed avoids the problem of static drop patterns also
encountered by Butazzo and Caccamo [6] that spare time
generated by dropped tasks has a “granular” distribution
and cannot be reclaimed at any time, hence it may render
the CPU idle. This is not desirable, especially when other
tasks are missing their deadlines.

Static drop patterns will influence the Quality of Service
received by firm real-time task permanently. Dynamic drop
patterns ensure that firm real-time tasks achieve maximum
performance when no other tasks need additional CPU time,
not wasting CPU time by unnecessarily dropping tasks.

3.2 Preliminary Implementation

We extended the BACKSLASH slack scheduling algo-
rithm [7] in the RBED framework [3] for the Linux 2.6.8.1
Kernel with firm real-time capabilities. For validation, we
first implemented the simplest static pattern, deeply red, de-
scribed in Section 3.1. We plan to implement the other static
dropping patterns and the dynamic drop mechanism in our
future work. Since we consider firm real-time as a subclass
of soft real-time, we extended the soft real-time specifica-
tion with a subtype for firm real-time adding parameters for
m and k. We use the firm real-time semantics described in
Section 3, in case of high system load only scheduling the
firm real-time tasks needed to fulfill the basic requirements.

Firm real-time processing requires that applications
properly handle dropped jobs. Even though this may sound
like a fundamental change, in current applications this is not
the case. Video applications in the early days of personal
computers introduced the concept of skipping frames(tasks)
to prevent the output from looking choppy on slower ma-
chines. Using our scheduler, an application receiving the
result of a non-consecutive job (or frame) can assume that
the execution of the intermediate ones has been skipped and
continue without waiting for them.

In order to simulate this behavior with a workload gener-
ator, we implement a system call to query a flag, indicating
whether the current task is going to be executed or not. In
case the flag indicates a task drop the process sleeps until the
next task release without consuming further CPU resources.
This corresponds to a task drop by the scheduler in case of
fully firm real-time capable applications.

3.3 Preliminary results

Our sample workload includes 2 hard real-time pro-
cesses accounting for 20% of the workload, a firm real-
time process with 28% and (m, k) constraints of (m,5)
and one soft real-time process with 50%, detailed in Ta-
ble 1. We reserve 2% of CPU utilization for the best-effort
processes. We compare the performance of soft real-time
processes in the presence of a firm real-time process con-
ventionally scheduled as hard real-time to scheduling it as
firm real-time with varying parameters for m. Since several
sources [6, 13, 11] indicate that the distribution of the slack
and the consuming tasks influences reclaimable slack we
also vary the period length of the soft real-time task while
keeping the workload constant by changing the execution
time accordingly.

Figure 4 shows the deadline miss ratio of the soft real-
time task as a function of its period. The first curve (HRT)
in the figure represents a firm real-time task scheduled as
hard real-time without dropping jobs; the other three curves
(FRT-m) represent respectively the case that m jobs of the

Deadline Miss Ratio (%)

50 90 130 170 210 250 290 330
SRT period (ms)

Figure 4. Firm real-time dropping pattern im-
pact on soft real-time performance

Table 1. Sample workload (unit in ms)
’ process type ‘ CPU utilization ‘ wcet ‘ period ‘

HRT 10% 20 200
HRT 10% 30 300
FRT 28% 28 100
SRT 50% 25-165 | 50-310

firm real-time task will be dropped consecutively in every
k =5 jobs.

As we can see, compared to non-drop mechanism
(HRT), the static drop pattern always results in equal or
lower soft real-time deadline miss ratio for the sample
workload.

4 Conclusion and Future work

In this paper we describe the characteristics of firm real-
time processes and discuss several approaches to exploiting
them in order to generate slack for other process classes,
in particular soft real-time processes. We provide an im-
plementation as an extension for the RBED scheduler for
Linux using a simple deeply red drop pattern. The results
of this first prototype, greatly improving soft real-time per-
formance, encourage us to explore the potential of opti-
mized static and dynamic drop patterns. Our future work
will include implementing and testing the performance of
the remaining approaches for task dropping and proving
that exploiting firm real-time characteristics always results
in better or equal performance for soft real-time tasks. Even
though we can improve soft real-time performance by drop-
ping firm real-time tasks, the question if it is worth it has to
be answered. Therefore future work will also include inves-
tigating this question along the lines of the Dynamic Quality
of Service management (DQM) approach previously exam-
ined by Brandt et al. [4].

References

(1]

(2]

3

—

[4

—_

(5]

(6]

[7

—

(8]

(9]

(10]

(11]

[12]

[13]

(14]

G. Bernat, A. Burns, and A. Llamosi. Weakly hard real-time
systems. IEEE Transactions on Computers., 50(4):308-321,
April 2001.

G. Bernat and R. Cayssials. Guaranteed on-line weakly
hard real-time systems. Proceedings. 22nd IEEE Interna-
tional Real-Time Systems Symposium, pages 25-37, Decem-
ber 2001.

S. Brandt, S. Banachowski, C. Lin, and T. Bisson. Dynamic
integrated scheduling of hard real-time, soft real-time, and
non-real-time processes. Proceedings. 24th IEEE Interna-
tional Real-Time Systems Symposium, pages 396—407, De-
cember 2003.

S. Brandt, G. Nutt, T. Berk, and J. Mankovich. A dynamic
quality of service middleware agent for mediating applica-
tion resource usage. Proceedings. 19th IEEE International
Real-Time Systems Symposium, pages 307-317, December
1998.

I. Broster, G. Bernat, and A. Burns. Weakly hard real-time
constraints on controller area network. Proceedings. 14 th
Euromicro Conference on Real-Time Systems, pages 134—
141, 2002.

G. Buttazzo and M. Caccamo. Minimizing aperiodic re-
sponse times in a firm real-time environment. /EEE Transac-
tions on Software Engineering, 25(1):22-32, Jan-Feb 1999.
C.Lin and S. Brandt. Improving soft real-time performance
through better slack reclaiming. Proceedings. 26th IEEE In-
ternational Real-Time Systems Symposium, pages 3—14, De-
cember 2005.

G.Koren and D. Shasha. Skip-over: algorithms and com-
plexity for overloaded systems that allow skips. Proceed-
ings. 16th IEEE International Real-Time Systems Sympo-
sium, pages 110-119, December 1995.

M. Hamdaoui and P. Ramanathan. A dynamic priority as-
signment technique for streams with (m, k)-firm deadlines.
IEEE Transactions on Computers, 44(12):1443-1451, De-
cember 1995.

A. Marchand and M. Silly-Chetto. Qos and aperiodic tasks
scheduling for real-time linux applications. 6th Real Time
Linux Workshop, November 2004.

L. Niu and G. Quan. A hybrid static/dynamic dvs schedul-
ing for real-time systems with (m,k)-guarantee. Proceed-
ings. 26th IEEE International Real-Time Systems Sympo-
sium, pages 356-365, December 2005.

G. Quan and X. Hu. Enhanced fixed-priority scheduling
with (m,k)-firm guarantee. Proceedings. 21st IEEE Inter-
national Real-Time Systems Symposium, pages 79-88, De-
cember 2000.

D. Thomas, S. Gopalakrishnan, M. Caccamo, and C. Lee.
Spare cash: Reclaiming holes to minimize aperiodic re-
sponse times in a firm real-time environment. Proceedings,.
17th IEEE Euromicro Conference on Real-Time Systems,
pages 147-156, July 2005.

D. Xiu, X. Hu, M. Lemmon, and Q. Ling. Firm real-time
system scheduling based on a novel qos constraint. Pro-
ceedings. 24th IEEE International Real-Time Systems Sym-
posium, pages 386 — 395, December 2003.

